Die Technische Universität Ilmenau hat bei der Erforschung neuer regenerativer Energien einen aus wissenschaftlicher Sicht spektakulären Durchbruch erzielt. Ein internationales Forscherteam unter der Leitung des Ilmenauer Professors Thomas Hannappel steigerte den Wirkungsgrad der so genannten direkten solaren Wasserspaltung von 12,4 auf 14 Prozent. Mit der Methode, die auf künstlicher Photosynthese beruht, lässt sich der Brennstoff Wasserstoff aus dem Licht der Sonne herstellen – sauber, nachhaltig und kostengünstig. Das spektakuläre Rekordergebnis, veröffentlicht in der führenden Fachzeitschrift „Nature Communications“, könnte die Lösung der Energieprobleme auf der Welt sein.
Weltweit suchen Forscher fieberhaft nach Alternativen zu herkömmlichen, fossilen Energieträgern, da diese zur Neigung gehen. Spätestens seit der ersten Ölkrise Anfang der 70er Jahre wird aber nicht nur nach bezahlbaren Brennstoffen gesucht. Angesichts des Klimawandels, der weitgehend durch die Verbrennung der fossilen Energieträger verursacht wird, suchen Forscher auch nach Brennstoffen, die regenerativ und sauber erzeugt werden können. Den ultimativen Energieträger sehen viele in Wasserstoff: Er weist eine hohe Energiedichte auf und bei seiner Verbrennung entsteht als Abfallprodukt nur reines Wasser. Derzeit wird das Gas aber ganz überwiegend durch Dampfreformierung von Methan erzeugt, eine alles andere als umweltfreundliche und nachhaltige Methode. Nahezu ohne schädliche Abfallprodukte lässt sich Wasserstoff hingegen mit der Methode der direkten solaren Wasserspaltung herstellen. Bei der sogenannten künstlichen Photosynthese ist es Sonnenenergie, die die Photolyse von Wasser antreibt. So wird mithilfe der Energie des Sonnenlichts Wasser direkt in Wasserstoff und Sauerstoff umgewandelt. Bei der Verbrennung (Oxidation) wird daraus wieder das Ausgangsprodukt Wasser – ein Kreislauf, der eine saubere und ökologisch nachhaltige Energiewirtschaft ermöglichen könnte. Im Energiemix der Zukunft haben solche solar erzeugten Brennstoffe ein ungeheures Potenzial: Noch 2014 lag in Deutschland der Anteil der erneuerbaren Brennstoffe an der gesamten Energieproduktion bei nicht mehr als 11 Prozent. Wissenschaftler der Elektrochemie sehen die Methode, Brennstoffe mithilfe von Licht zu erzeugen als Lösung aller Energieprobleme.
Die Herstellung von „Sonnen-Wasserstoff“ auf industrieller Ebene scheitert aber bislang an den Kosten. Um den Produktionsaufwand finanziell zu rechtfertigen, ist der Wirkungsgrad der künstlichen Photosynthese, also der Energiegehalt des erzeugten Wasserstoffs bezogen auf den des zugeführten Sonnenlichts, einfach zu gering. Bisher lag die maximale jemals erreichte Effizienz bei 12,4 Prozent – ein Ergebnis, das vor 17 Jahren vom National Renewable Energy Laboratory in den USA erzielt wurde. Schätzt man einen wirtschaftlichen Einsatz der solaren Wasserspaltung im Vergleich mit fossilen Brennstoffen ab, so könnte man ab einer Effizienz von etwa 15 Prozent wirtschaftlich konkurrenzfähig werden. Seit Jahren forschen daher die wichtigsten Wissenschaftsstandorte der Welt mit viel Geld und Engagement daran, um die bestehende Bestmarke für künstliche Photosynthese von 12,4 Prozent zu überwinden. Eine Effizienzsteigerung auf 14 Prozent weist Matthias May in seiner Doktorarbeit nach. Eine gemeinsame Veröffentlichung des Fachgebiets Photovoltaik an der TU Ilmenau um Prof. Thomas Hannappel, des Instituts für Solare Brennstoffe am Helmholtz-Zentrum Berlin, des Fraunhofer-Instituts für Solare Energiesysteme ISE und des California Institute of Technology zum Dissertationsthema im renommierten Wissenschaftsmagazin „Nature Communications“ *), zeigt die wissenschaftliche Bedeutung der Forschungsarbeiten.
Der Weg zur Serienreife
Nun gilt es, die Serienproduktion von Hochleistungs-Halbleiterbauelementen kostengünstig zu machen. Prof. Hannappel sieht die Lösung in der Verwendung von Silizium: „Dieses ausgereifte Material eignet sich hervorragend als Basissubstanz für hocheffiziente, kostengünstige Bauelemente. Es ist fast unbegrenzt verfügbar und besitzt nahezu ideale physikalisch-chemische Eigenschaften.“ Allerdings kommen bei der Verwendung von Silizium in den Bauelementen Materialgruppen zusammen, die verschiedenen Halbleiterfamilien angehören. Bei einer ungenauen Zusammenführung dieser Materialien sind die Leistungseinbußen enorm. Die Übergänge von einem Material zum anderen, die so genannten Grenzflächen, sind bei der Herstellung von Bauelementen häufig sehr kritisch, ihre Wechselwirkungen stellen die Wissenschaft seit jeher vor Probleme. Schon 1945 klagte der österreichische Nobelpreisträger für Physik Wolfgang Pauli: „Gott erschuf das Volumen, der Teufel die Grenzflächen“. Trotzdem ist Hannappel sicher, dass sich diese höchst schwierige Aufgabe bewältigen lässt: „Unser Zugang ist besonders, ja weltweit einmalig. Die Leistung besteht darin, an den entscheidenden Stellen ganz genau hinschauen und die Oberflächen von Halbleitern gezielt zu manipulieren zu können.“
*) May, M. M. et al.: Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6:8286 doi: 10.1038/ncomms9286 (2015)
Weitere Informationen:
www.tu-ilmenau.de